If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-18x+16=0
a = 3; b = -18; c = +16;
Δ = b2-4ac
Δ = -182-4·3·16
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{33}}{2*3}=\frac{18-2\sqrt{33}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{33}}{2*3}=\frac{18+2\sqrt{33}}{6} $
| b+3.3=8.9;b | | 3a=12;a= | | 5(2x-7+42-3x=2 | | 3x–4=5x+7 | | 9x+36x=108 | | 3+10x=-97 | | 5(2+y)=y=10+4(y+1) | | 12x²+44x=5 | | j+6=8 | | x+5,5=-3x-4,5 | | ×+6y=47 | | 2(u+7)-8u=26 | | -5x+3(x-3)=3 | | 3x+12=2(×+2)-1 | | 5(v+5)-7v=11 | | -3(x+5)=3x+27 | | -9w+6=2(w-8) | | -7y+3(y-3)=-1 | | 2y-8+2(4y+4)=-4(y+2) | | ?x3.6=0.15 | | (0.3x-24)+(0.1x-48)=90 | | 43,2(11/18x-7/8)-25,5(9/17x-2/3)=-59,5 | | x=√12x-32 | | -7(0,3x-8)+3(0,4x+5)=8 | | 8x+11=13x+4 | | -7x+5=30-2x | | 3y=(2y-5) | | X=12y+15 | | -2x+4=-3x-11 | | x^2+8x+3=27 | | 8x=x^2-5x | | 25º-(x-18)=90 |